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Introduction

This paper describes an investigation into the uses of first-order, local sensitivity analysis 
in a Lagrangian dispersion code. The goal of the project is to gain knowledge not only 
about the sensitivity of the dispersion code predictions to the specific input parameters of 
interest, but also to better understand the uses and limitations of sensitivity analysis 
within such a context. The dispersion code of interest here is LODI [1], which is used for 
modeling emergency release scenarios at the Department of Energy’s National 
Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National 
Laboratory. The NARAC system provides both real-time operational predictions and 
detailed assessments for atmospheric releases of hazardous materials. LODI is driven by 
a meteorological data assimilation model [2] and an in-house version of COAMPS [3], 
the Naval Research Laboratory's mesoscale weather forecast model. 

There is increasing interest in the development of uncertainty quantification tools for 
NARAC and other computational models at LLNL. Monte Carlo and ensemble 
techniques are available but computationally expensive. Sensitivity analysis is being 
explored as a means to gain an understanding of the contribution to uncertainty from 
certain types of input parameters. As a first step, first-order sensitivity analysis was 
implemented within the precipitation-scavenging module of LODI. This module is 
logically split from the remainder of the dispersion calculation, so the sensitivities may be 
explored without concern about parameter and computational dependencies, and the 
linearization implicit in the formulation is acceptable. The general goals of the project 
are:

1. To understand the sensitivity of LODI predictions of precipitation scavenging (wet 
deposition) to the rain rate and aerosol particle size

2. To explore the advantages and limitations of first-order sensitivity analysis within a 
Lagrangian dispersion framework

3. To gain the understanding necessary to plan a more comprehensive uncertainty 
analysis project for the NARAC suite of codes

The following text describes the mathematical foundation of the sensitivity analysis and 
its implementation within LODI. Later sections present specific results. 
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Mathematical Background

First-order sensitivity analysis consists of a mathematical exploration of the response of a 
computed output to a perturbation in the input parameters. For example, given a 
differential equation for an n-dimensional vector y, expressed:

( )pytfy ,,=& eq.  1

where p is an m-dimensional vector of parameters [p1, p2, …, pm]T, we assume that a 
perturbation δpj causes a response in yi of magnitude δyi, relative to the nominal value 
yi,o, where the relationships are assumed to be linear:
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The sensitivity matrix S is defined as the first-order relationship between the dependent 
variable y and the parameters p:  
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The total response of yi to the perturbation vector (for discrete perturbations) may be 
obtained through a Taylor expansion as: 
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Generally, we can write:
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The parameter perturbations may be generated from k statistical samples around the 
nominal value, in which case the middle term δpδpT should be divided by k to produce an 
average, yielding an m×m matrix. Equation 6 describes the relationship between the 
covariance matrix for y, Cy and the covariance matrix for δp, Cp:

T
py SSCC = eq.  6
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If the statistical perturbations in the parameters are uncorrelated, (i.e. if the parameters 
are uncorrelated), then Cp will be diagonal. In this case the form will be simplified from 
the full Taylor series, as the cross terms will be eliminated. An example (for precipitation 
scavenging) is given later in the paper. 

Precipitation Scavenging in LODI

LODI is a Lagrangian particle code in which pseudo particles, representing groups of 
simulated aerosol particles from a specified size distribution, travel through a 
computational domain that represents the atmosphere. Each particle contains mass that 
may be lost through precipitation scavenging, following a first-order decay equation:

MM λ−=& eq.  7

The scavenging coefficient λ is a function of the rain rate and aerosol particle diameter. 
This coefficient includes the effects of both the capture efficiency of a particular raindrop 
and the volume of air swept by the raindrops, given a rain rate. Streamlines are created 
around a falling raindrop, and the capture efficiency includes Brownian diffusion, 
interception, and impaction, a subset of the processes that affect whether the aerosol 
particle can effectively follow the streamlines past the raindrop and escape. The 
dependence of λ on these parameters is shown in Figure 1. A more complete explanation 
of the theoretical underpinnings and computation of λ is found in [4]. 

Figure 1: Scavenging coefficient λ, as a function of particle size and rain rate
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There are several features of the shape of the curves in Figure 1 that indicate important 
sensitivities. First, λ spans six orders of magnitude for the parameter values shown. For a 
given particle size, the rain rate can change λ by almost two orders of magnitude; λ
varies dramatically across particle sizes. There are three important particle size regimes. 
In the smallest, for particles up to roughly 5x10-7 microns, the dominant capture 
mechanism is Brownian diffusion; the smaller particles with higher diffusivities are 
captured most efficiently. At the other end of the spectrum, the largest aerosol particles 
cannot follow the fluid streamlines and instead impact the raindrop directly; whether this 
can happen depends on a critical Stokes number for collection, creating a discontinuity in 
the scavenging coefficient at a particle size of ~3.3 microns (for unit density particles) as 
seen in Figure 2. The middle range of particle sizes have small diffusivities and will not 
directly impact, hence they are poorly captured. 

Figure 2: The discontinuity in the calculation of λ, resulting from Stokes 
                number considerations

An example calculation of the decay process (i.e. equation 7) is presented in Figure 3. 
Here the particle diameter is fixed at 5 microns, and the rain rate varies from 1 to 150 
mm/hr. Not unexpectedly, less mass is removed in the early time for the particles with the 
smallest scavenging coefficients. 
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Figure 3: Evolving particle mass as a function of the scavenging coefficient

Within LODI, the scavenging coefficient is calculated dynamically, using the particle 
size and the rain rate interpolated from a 2-D gridded field to the particle’s location. The 
particle mass is depleted as appropriate for the time step, and the scavenged mass is 
added to a 2-D deposition array representing the appropriate location on the ground. 
Deposits from different particles are accumulated. At relevant times of interest the 
spatially varying air concentration is obtained by summing over the mass of particles in a 
grid cell volume. Our interest is in quantifying the sensitivities of the deposited mass and 
air concentrations to the rain rate and particle size. 

Sensitivity Analysis in the LODI Precipitation Scavenging Module

Because precipitation scavenging depends on the two parameters J (rain rate) and dp 

(particle size), two sensitivities are tracked over time for each particle. For expository 
purposes the paper first explains the computation of sensitivity with respect to dp; the 
calculation of the sensitivity with respect to J is analogous. Discussion of the integration 
and use of the two sensitivities follows. We define the sensitivity S of the particle’s mass 
M (for a particle i at time t), to the particle size dp as:  
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The normalization by dp is for convenience in the specification of the uncertainty for dp. 
The response of the particle (which may be interpreted as an uncertainty in the mass) to a 
given relative uncertainty in particle size (denoted here by σdp) is given by:
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Note here that sensitivities are typically negative: higher rain rates promote more mass 
removal, and the sign indicates this negative correlation. 

An equation for the evolution of the sensitivity of a particle i at time t may be derived 
from the equation for the evolution of mass in time, (treating ln(dp) as time-invariant):
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For constant in time λ, this equation has an analytic solution, which we use for testing:
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We assume that the initial sensitivity is zero, for generality. A sample analytic solution is 
plotted in Figure 4, below. For a fixed rain rate, ∂λ/∂(ln(dp)) is constant, so the sensitivity 
follows te-λt.  The sensitivity peaks in magnitude at t = 1/λ. For t > 1/λ, the response of 
the particle to a perturbation in the rain rate shrinks over time. This trend can be observed 
in Figure 4, in which the sensitivity to particle size, Sdp, is presented. The analytic 
solution for SJ shows the same behavior. 

The equation for the decay of particle mass with rain rate is solved within LODI as:

( )( )t
ii etMm ∆−−=∆ λ1 eq.  12

where ∆m is the mass removed from the particle (and added to the deposition array) in 
the time step ∆t. 
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Given this explicit approach to the solution of the mass equation, we take a similar 
approach to the solution of the sensitivity equation, discretizing as:
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If the time step chosen is appropriate for the mass equation, it will also be sufficient for 
the sensitivity equation. Within LODI the time step is limited by a variety of processes; 
the limitation for precipitation scavenging is ∆t ≤ 1/8λ. We obtain satisfactory 
computational solutions to equation 10 within the limits of this ∆t, as shown in Figure 4; 
the agreement is improved by using a smaller time step, as expected. 

Figure 4: Comparison of analytic and computational solutions to sensitivity

The gradient of λ is computed with a simple forward difference, using a small 
perturbation ε:
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Because of the apparent strong sensitivity of λ to particle size, as seen in Figure 1, and 
because the equation for sensitivity depends on the gradient of λ with respect to particle 
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size, we wanted to ensure that the computation of that gradient was correct. Thus we 
investigated the use of different sizes of perturbation as well as the difference between 
forward and centered differences. The effects of different perturbations (ε) on the 
gradient computation are shown in Figure 5. 

Figure 5: Effect of perturbation size on gradient estimation (see text for details)

While the larger perturbation would be sufficient for most of the particle sizes of interest, 
the gradient diverges significantly for particles of size 0.5 to 1 micron. Hence, a uniform 
value of 1.0e-3 was used for the perturbation value for particles ranging from 0.5 to 4 
microns, in the results shown below. The effect of the perturbation on particles smaller 
than about 5e-7 m is negligible and is not shown, as the gradient is negative in this 
region.

The difference between the forward and central difference approximations are shown in 
Figure 6, below. The difference is largest at the impaction discontinuity, and since this 
was a deviation of only 10%, we use forward differences for all particle sizes. 

(g
)



9

Figure 6: Use of different approximations for the derivative

Figure 7 contrasts the sensitivity to particle size and rain rate, for a constant rain rate of 5 
mm/hr, for the range of particle sizes of interest. Each data point represents the sensitivity 
of an individual particle’s mass to either its particle size or the rain rate. Computed data 
points are indicated with symbols and connected by lines. Sensitivity is a function of 
time: the plot shows just the sensitivities computed at the end of the first time step of the 
calculation. Later time steps show similar trends, as would be expected from the form of 
the equation (see figures 23 and 24, below). 

(g
)
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Figure 7: Magnitudes of sensitivities to particle size and rain rate (following the first 
time step) 

All sensitivities are negative, except Sdp for particles smaller than ~5.6e-7 m. These 
positive sensitivities reflect the trend of the scavenging coefficient with particle size in 
this regime: increasing particle size results in smaller values for λ. Less mass is 
scavenged from the particle with a smaller λ, hence Sdp (which represents the trend of 
particle mass with particle size) is positive. All other sensitivities are negative, implying 
that an increase in the parameter (particle size or rain rate) would cause more mass to be 
scavenged from the particle. 

Four distinct regions can be observed. For the smallest particle sizes considered, 10-8 and 
10-7 m, the magnitude of Sdp is slightly greater than SJ. The magnitude of Sdp drops below 
that of SJ at the minimum of the Greenfield Gap, around 0.5 microns, where Sdp changes 
sign. From roughly 0.5 to 10 microns, the magnitude of Sdp exceeds that of SJ, and then 
for larger particles SJ becomes more important again. There is a steep jump in both 
sensitivities for at a particle aerodynamic diameter of ~3.3 microns, where impaction 
becomes possible (mimicking the jump in the scavenging coefficient curve). 

The sensitivity of the particle mass to wet deposition is zero for large particle sizes: 
lambda approaches a constant value (as seen in Figure 1), so the gradient becomes zero. 
In other words, increasing particle size does not affect the scavenging coefficient. Hence 
no value for Sdp has been plotted on this scale for dp ≥ 2e-5 m. Particles smaller than 10 

(g
)
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microns pose the greatest danger through inhalation. For much of this regime, the 
sensitivities to the two parameters have the same magnitude, indicating that both are 
important. This is a key result of the study. A large improvement in accuracy in only one 
of the parameters will likely not provide a large improvement in the prediction fidelity.

Expansion of Analysis to Multiple Parameters

In order to compute the overall uncertainty in particle mass, the two sensitivities must be 
considered together. Here the sensitivity is a 1×2 matrix:
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Because the particle size dp and the rain rate J are uncorrelated, the covariance matrix is 
simply:
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where the variances represent the relative uncertainty in the parameters. We are interested 
in perturbations in particle mass M. Making use of equation 5, the uncertainty of the mass 
is computed from the sum of the squares of the products of the sensitivities and relative 
uncertainties in J and dp.
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Note that equation 4, which predicts a response to a specific perturbation, can be 
expressed: 
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When the response of M is computed over many samples of perturbations in J and dp (or 
from a statistical representation), the cross term represents the correlation between the 
perturbations, which will be zero in our case, and the perturbations in the squared terms 
become the statistical variances of the perturbations, as in equation 17.

To use the sensitivities in the calculation of uncertainty, we need to specify the relative 
uncertainties for the input parameters. The true relative uncertainty will be dependent on 
the circumstances. For the following example, we assume that the relative uncertainties 
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(σJ and σdp) in rain rate and particle size are 10 percent, i.e.: δJ/J = δdp/dp = 0.1. These 
results are shown in Figure 8. 

Figure 8: Uncertainty in particle mass following the first time step

Here the trend follows the sum of the sensitivities plotted in Figure 7. The uncertainty 
normalized by the mass removed peaks at the discontinuity, where substantially more 
mass is removed. 

A suite of single-particle simulations is presented in the appendix, demonstrating the 
effects of different relative uncertainties on particle mass uncertainties, for various 
particle sizes and rain rates. 

Air Concentration Uncertainty

The sensitivities and uncertainties in particle mass are used to compute the overall 
uncertainty in predicted air concentrations as follows. The concentration C, composed of 
a nominal concentration value Co and the associated uncertainty δC, is computed by 
summing particle mass in a given volume:
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where i represents the sum over all particles in the volume V, and j represents the sum 
over the perturbed parameters of interest. Thus the uncertainty in air concentration may 
be computed simultaneously with the air concentration itself, using the sensitivities 
associated with the particles in the volume of interest. 

Air concentration uncertainties resulting from wet deposition were computed for a 
simulated 15-hour rainfall event. The test simulation used precipitation data from an 
inhomogeneous event crossing through north-central Oklahoma and south-central Kansas 
on July 18, 1997. Observed meteorological data from the DOE Atmospheric Radiation 
Measurement Program provided the near-surface winds every 30 minutes and vertical 
profiles of winds every 3 hours. The 4-km, hourly precipitation data set was computed at 
the Arkansas Red-Basin River Forecast Center, using reflectivity from numerous weather 
radars and observed precipitation from over 100 rain gauges. The simulation was 
executed on a 4 km grid; rain rates were interpolated from the grid to the Lagrangian 
particle locations at each time step. The simulated contaminant aerosol source emitted 
continuously in the southeast corner of the domain, at 10 m height, at a location expected 
to be buffeted by the storm. A total of 200,000 particles were used for the 15-hour 
release. A post-processor smoothing algorithm (1:2:1 filter) was used to smooth 
anomalies introduced by discrete particles. The uncertainty of the air concentration was 
computed assuming relative uncertainties of 1%. This number was chosen arbitrarily for 
illustration.

The air concentration plume after 8 hours of simulation is shown in Figure 9 below. The 
contours represent concentration levels separated by factors of 10 (i.e., 0.1-1 
units/volume, 1-10 units/volume, etc.). The uncertainty associated with this air 
concentration plume is also shown. The uncertainty plot is contoured at levels 1/1000 that 
of the air concentration plot. Two important features emerge: (1) the uncertainty is not 
uniform over the domain, and (2) there are high concentrations of uncertainty in areas 
most affected by the plume, as would be expected. 
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Figure 9: Air concentration (at left) and associated uncertainty (contoured at 1/1000 of air 
concentration) (at right) 

It is desirable to use the uncertainties to establish “error bars” on the prediction, perhaps 
by showing contours of the air concentration plume ± the uncertainty, as in Figure 10. 
However, for this example the uncertainty is small relative to the air concentration for 
this problem, and such contours are virtually indistinguishable. 

Figure 10: Air concentration ± uncertainty
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Uncertainty of Deposited Mass

As noted, the incremental mass scavenged from a particle in a time step is recorded in a 
two-dimensional deposition array to which all particles may contribute. We wish to 
estimate the sensitivity of deposited mass to the rain rate (or particle size), i.e. the 
response of that deposit (cell-wise) to a perturbation in the input, from which we will 
later estimate the uncertainty in the deposition field. Overall we expect an increase in rain 
rate to promote more deposition. But the analysis of sensitivity for a deposition field 
within a transport calculation reveals a more complex story. Consider a single deposition 
from a specific particle i, occurring at time tn+1. The incremental mass removed (and 
deposited) is:

( ) ( ) ( )11 ++ −=∆ ninini tMtMtm eq.  20

The sensitivity of the deposited mass to the rain rate is then:

( ) ( )( ) ( )( ) ( ) ( )1
1

)ln()ln()ln( +
+ −=∂

∂−∂
∂=∂

∆∂
nini

ninii tStS
J

tM

J

tM

J

m
eq.  21

Or, using a Taylor’s series notation, where the subscript o represents the nominal value 
(without consideration of uncertainties):
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The equation shows that the response of the deposited mass to the rain rate is described 
by the difference in sensitivity of the particle before and after deposition. As noted 
previously, particle sensitivities are typically negative in sign. In this case, a positively 
signed difference indicates that the sensitivity of the particle is increasing in magnitude, 
and an increase in rain rate would promote more deposition in the cell. Conversely, a 
negatively signed difference indicates that the sensitivity of the particle is decreasing in 
magnitude, and an increase in rain rate would promote less deposition in the cell. This 
would occur when an increase in rain rate caused earlier deposition of the particle mass, 
depleting mass and lessening downwind deposits. Hence the sign of the sensitivity of the 
deposited incremental mass conveys important information. 

The “deposited” sensitivity is thus S(tn)-S(tn+1); i.e. it changes its sign when S(tn) = 
S(tn+1), at the root of equation 10:
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λ
1* =t eq.  23

The existence of differently signed sensitivities for the deposited mass raises the 
possibility of compensatory effects from different particles within a simulation. By way 
of example, consider a one-dimensional simulation, where a particle travels with a 
constant velocity through constant rain, depositing mass along the line it travels. 
Increasing the rain rate will cause the mass of the particle to be depleted earlier, 
generating more mass in deposition cells near the beginning of the particle transport 
(positive response to perturbation) and less mass in cells farther along (negative 
response). Alternately, a decrease in rain rate would generate less mass in the early cells 
and more in the cells farther along. Now imagine two such particles have deposited along 
the same path but encountered different rain rates: the first depositing 3 deposition units 
with a positive 0.1 response, the second depositing 2 units with a negative 0.5 response: 

deposit 1: 3 units +0.1 response
deposit 2: 2 units - 0.5 response

To understand the total deposition in this cell, we must include the compensatory effects 
of the two. The total deposit is 5 units, with a response of –0.4; a higher rain rate would 
result in a lower deposition in the cell. The overall uncertainty on this deposit is 0.4 
deposition units. 

A suite of single-particle simulations is presented in the appendix, demonstrating the 
effects of different relative uncertainties on the deposited mass, for various particle sizes
and rain rates. 

Conclusion

First-order local sensitivity analysis provides a tool for exploring the sensitivity and 
uncertainty of model simulations to perturbations in input parameters. This work 
describes the use of such analysis to investigate and contrast the sensitivity of wet 
deposition processes to rain rate and particle size. Several important features have been 
identified. First, the magnitudes of the wet deposition sensitivity to particle size and rain 
rate are comparable, for the regimes of interest, indicating that both parameters must be 
known well for adequate simulation. The slightly greater sensitivity to particle size for 
certain particle sizes of interest suggests that source term characteristics can play a key 
role in overall uncertainty. Second, the derived deposition sensitivities change sign with 
distance downwind. As a result, deposition uncertainties show minima at some distance 
downwind (where the sensitivity, in changing sign, passes through zero). These results 
indicate that deposition sensitivities and uncertainties will evince complex patterns. 
Finally, the results of a sample simulation demonstrate that the air concentration 
uncertainties (with respect to wet deposition) can be small in a wet deposition 
environment. 
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This study explored only first-order local sensitivity analysis, and use of these 
sensitivities for uncertainty quantification relies on a truncated Taylor series. Hence, the 
acceptable perturbation size (or acceptable input uncertainty) is limited by the accuracy 
of that truncation. Nonetheless, this method provides a useful analysis for contrasting the 
sensitivities of the two parameters of interest and beginning to quantify the uncertainty 
associated with the phenomenon of interest. 

Implementation into a Lagrangian dispersion code was straightforward for wet deposition 
processes, in which the quantity of interest (particle mass) followed a straightforward 
relationship with the input parameters. This methodology is likely not appropriate for an 
overall uncertainty quantification of plume transport, in which the meteorological input 
uncertainties (wind speed and direction) are poorly quantified and influence particle 
transport in numerous complex ways (such as through turbulent parameterizations).
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Appendix: Test Cases

A suite of simulations was executed with constant λ to explore the results of the 
sensitivity and uncertainty calculations. The constant values of λ were obtained by fixing 
the particle size and rain rate, and the values chosen were meant to demonstrate different 
features. For simplicity, all simulations were executed with one particle only, and for 
each of the simulations, the particle mass trace and deposited mass were computed, along 
with the sensitivities of each to particle size and rain rate. Dry deposition was not 
computed, so all depositions described below include wet deposition only. Different 
values of uncertainties in rain rate and particle size were used to compute uncertainties on 
the mass remaining in the particle and the deposited mass. A subset of the simulations are 
presented here, as summarized in Table 1:

Table 1: Simulations for sensitivity testing
figure case 

number 
particle 
size [m]

rain rate 
[mm/hr]

lambda 
[1/s]

comments 

12 3 5e-6 1 9.27e-5 
13 5 5e-6 50 2.04e-3 
14 7 5e-6 150 4.62e-3 

Chosen to show range of 
lambdas.  Sdp> SJ. (see 
Figure 7).

15 8 5e-7 150 2.99e-6 SJ> Sdp, Sdp > 0. 
(Increasing particle size => 
smaller  λ and less mass 
removed).

16 9 1.5e-5 5 1.41e-3 SJ> Sdp, Sdp < 0.



19

Table 2: List of figures (key to Figures 12-16) for simulation results
cases: contain:

particle mass over time (a)

• particle mass over time
• particle mass uncertainty given σJ = σdp = 1%
• upper and lower bound (mass ± uncertainty)
• relative uncertainty = (uncertainty ÷ remaining mass)

particle mass over time (b)

• particle mass sensitivities to rain rate and particle size
• particle mass uncertainties for:

σJ = σdp = 1%
σJ = 10% & σdp = 1%
σJ = 1% & σdp = 5%

deposited mass by cell (c)

• deposited mass by grid cell at simulation end
• deposited mass uncertainty given σJ = σdp = 1%
• upper and lower bound (mass ± uncertainty)
• relative uncertainty = (uncertainty ÷ deposited mass)

deposited mass by cell (d)

• deposited mass sensitivities to rain rate and particle size
• deposited mass uncertainties for:

σJ = σdp = 1%
σJ = 10% & σdp = 1%
σJ = 1% & σdp = 5%
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Figure 12 (case 3a)

(case 3b)

(case 3c)

(case 3d)
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Figure 13 (case 5a)

(case 5b)

(case 5c)

(case 5d)
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Figure 14 (case 7a)

(case 7b)

(case 7c)

(case 7d)
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Figure 15 (case 8a)
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Figure 16 (case 9a)
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Figures 17 and 18 explore the effect of particle size and rain rate on the particle mass.  

Figure 17: Particle mass decaying over time, for two different particle sizes

Figure 18: Particle mass decaying over time for different rain rates.
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Figures 19 and 20 show the effect of rain rate on the deposited mass.

Figure 19: Deposited mass as a function of rain rate.

Figure 20: Uncertainty in deposited mass as a function of rain rate
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Figures 21 and 22 show the effect of particle size on the deposited mass.

Figure 21: Deposited mass as a function of particle size

Figure 22: Uncertainty in deposited mass as a function of rain rate.

(g
)

(g
)



28

Figures 23 and 24 show the time evolution of sensitivity to particle size and rain rate.

Figure 23: Magnitude of sensitivity to rain rate over time

Figure 24: Magnitude of sensitivity to particle size over time
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